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a b s t r a c t

This paper deals with the problem of locating path-shaped facilities of unrestricted length
on networks. We consider as objective functions measures conceptually related to the
variability of the distribution of the distances from the demand points to a facility. We study
the following problems: locating a path which minimizes the range, that is, the difference
between the maximum and the minimum distance from the vertices of the network to
a facility, and locating a path which minimizes a convex combination of the maximum
and the minimum distance from the vertices of the network to a facility, also known in
decision theory as the Hurwicz criterion. We show that these problems are NP-hard on
general networks. For the discrete versions of these problems on trees, we provide a linear
time algorithm for each objective function, and we show how our analysis can be extended
also to the continuous case.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Network facility location problems consist of locating a specified number of facilities in a network in order to supply
a set of costumers. Commonly used objective functions are either the sum of the distances from each client to its nearest
facility (median criterion), or the maximum of these distances (center criterion). Starting from the location of one or a set
of points, which can be either vertices or points along the edges, several authors extended the theory to facilities with
a connected structure (extensive facilities), such as path-shaped or tree-shaped facilities [5,17,19]. For a comprehensive
review, see, for example, [3,15,21]. Although median and center are the most representative objective functions in location
problems, none of these two criteria alone is able to capture all the essential elements of a location problem. In recent years
some papers considered the problem of finding an optimal location of a path or a tree using the two criteria simultaneously,
or a convex combination of them [1,2,13,20], or by considering the general ordered median objective [16]. Nevertheless, also
in these cases some salient features of real problems, like the dispersion of the clients’ demand with respect to a facility,
are not captured. The dispersion is a concept strictly related to the variability of the distribution of the distances from the
demand points to a facility. In particular, the issue of equity seems to be relevant when locating facilities in the public
sector applications. In the literature there are two main lines of research about equity measures. The first one deals with
how to measure equity and which properties equity measures should have. The second line of research is concerned with
providing efficient algorithms for the location of facilities in a network according to some equity measure. A review of the
existing literature about equity measures in location theory is given in [10]. In point location problems, efficient algorithms
have been provided for the minimization of the variance of the distance travelled by a customer to a facility, as well as,
for minimizing the range objective function, which is given by the difference between the maximum and the minimum
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distance from a facility [11]. Almost all the papers focusing on equity measures deal with the location of a single point on a
network. An exception is [4] where the authors provide an O(n2 log n) time algorithm for the location, on a tree network, of
a path-shaped facility which minimizes the variance. In [14] the same problem is solved in O(n2) time.

In this paper we consider the range objective function, as well as, the Hurwicz objective, which originates in decision
theory [7,12] and is given by a convex combination of the maximum and the minimum distance from the vertices of the
network to the facility. We study the problem of locating path-shaped facilities of unrestricted length on a tree where all
the vertices have the same weight, while positive real lengths are associated to the edges. We focus on two main problems:
locating a path which minimizes the range, and locating a path which minimizes the Hurwicz objective function. Moreover,
we study the following two additional range-type constrained optimization problems: locating a path which minimizes the
maximum distance subject to the minimum distance bounded below by a constant, and locating a path which maximizes
the minimum distance subject to the maximum distance bounded above by a constant. Similarly, we study the following
two additional Hurwicz-type problems: locating a path which minimizes the maximum distance subject to the minimum
distance bounded above by a constant, and locating a path which minimizes the minimum distance subject to the maximum
distance bounded above by a constant. To the best of our knowledge these six problems have not been considered in the
literature, yet. We consider both the discrete version of the above problems, that is, when the endpoints of the path are
vertices, and the continuous version, that is, when at least one endpoint belongs to the interior of an edge. For general
networks we show that both versions of the six problems are NP-hard. For tree networks we provide the following results.
In the discrete case, we solve all the six problems by adopting a bicriterion approach similar to those provided in [1,15], that
is, we embed each of them into a suitable bicriteria problem related to the maximum and the minimum distance criteria.
We provide two linear time dynamic programming algorithms for the range-type and Hurwicz-type problems, respectively.
Given a tree with n vertices, each algorithm finds in O(n) time a superset that includes the representation of the set of
Pareto-optimal paths in the outcome space, along with some extra points. We also show that the cardinality of this superset
is O(n). Thus, solving the discrete versions of the above six problems is done in linear time by scanning this superset and
evaluating the objective functions at each of its elements. Moreover, we show that the set of Pareto-optimal paths can be
extracted from this superset in O(n log n) time by using the algorithm provided by Kapoor [8]. In the continuous case, we
provide an O(n2) time algorithm to solve the problem of minimizing the range function. We also provide algorithms that
solve the range-type constrained optimization problems in O(n) time. For the Hurwicz-type problems we show that either
no optimal path exists, or it reduces to the problem of locating a path which minimizes the maximum distance.

For the implementation of our algorithms we need some quantities associated to each vertex of the tree. These quantities
are computed in a preprocessing phase in time O(n). Some of the recursive functions adopted in this phase are already known
in the literature, but some others are presented in this paper for the first time.

The paper is organized as follows. In Section 2, we introduce the notation and definitions and prove the complexity results
on general graphs. Section 3 provides the recursive formulas for computing all the quantities needed in our algorithms.
Section 4 describes the algorithms for solving the range-type and the Hurwicz-type problems on trees. The paper ends with
some concluding remarks and extensions.

2. Definitions, complexity results and basic properties

Let T = (V, E) be a tree with |V| = n. Suppose that a weight equal to one is associated to each vertex of the tree, while
a positive real length `(e) is assigned to each edge e ∈ E. Suppose that T is rooted at a vertex r and denote by Tr the rooted
tree. For any vertex v, let Tv be the subtree of Tr rooted at vertex v, S(v) the set of children of v in Tr , and p(v) the parent of
v in Tr . Clearly, a vertex v is a leaf if and only if |S(v)| = 0. For any pair of points x and y in T, that may be vertices or may
belong to the interior of an edge, we denote by P(x, y) the unique path connecting x and y. We denote by d(x, y) the length
of P(x, y). In the following, we will avoid specifying one or both the endpoints of a path if not necessary. A path is discrete
if both its endpoints are vertices of T, otherwise it is continuous. We denote by diam the diameter of T, i.e., the length of a
longest path in T, and by c its absolute center, i.e., the middle point of the longest path in T. We denote by d(u, P) the distance
from a vertex u to a path P, that is, the length of the shortest path from u to a vertex or an endpoint of P. For any point x in T,
the eccentricity of x is E(x) = maxu∈V d(u, x), while for any path P the eccentricity of P is E(P) = maxu∈V d(u, P). The absolute
center c is the point in T that minimizes the eccentricity. The absolute center could be either a vertex, or a point along an
edge. Finally, PC denotes the path center of T, that is, the shortest path that minimizes the eccentricity in T. It is well known
that c ∈ PC and that PC is unique [6,18].

For a tree T = (V, E), we consider the range objective function which is defined as follows:

R(P) = max
u∈V\P

d(u, P)− min
u∈V\P

d(u, P). (1)

Given a path P, for any 0 ≤ α ≤ 1, we also consider the Hurwicz objective function:

H(P) = αmax
u∈V\P

d(u, P)+ (1− α) min
u∈V\P

d(u, P). (2)

Both R(P) and H(P) are non negative variability measures. In this paper we suppose that the tree T is not a path. Actually,
since we are concerned with desirable facilities, when T is a path, the solution is assumed to be the path itself.
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Table 1
Summary of results

Range-type problems Hurwicz-type Problems
Problem Discr. Cont. Problem Discr. Cont.

P1 min R(P) O(n) O(n2) P4 min H(P) O(n) No optimal path exists
P2 min E(P)s.t.µ(P) ≥ γ O(n) O(n) P5 min E(P)s.t.µ(P) ≤ γ O(n) O(n)
P3 maxµ(P)s.t. E(P) ≤ γ O(n) O(n) P6 min µ(P)s.t. E(P) ≤ γ O(n) No optimal path exists

Given a path P we denote byµ(P) = minu∈V\P d(u, P) the minimum distance from a vertex u 6∈ P to P. Given a subset I ⊂ V
and a path P whose vertices are all in I, we denote by µI(P) = minu∈I\P d(u, P) the minimum distance to P from any vertex
u ∈ I not belonging to P. Clearly, µV(P) = µ(P).

Given a path P, since d(u, P) = 0 for each u ∈ P, (1) and (2) can be rewritten in the equivalent form:

R(P) = E(P)− µ(P) (3)

and

H(P) = αE(P)+ (1− α)µ(P). (4)

In this paper we study six different path location problems of unrestricted length, both in their discrete and continuous
version (see, Table 1). We show that these problems are NP-hard on general networks, while we provide new complexity
results for all the problems on trees. These results are summarized above.

Problems P1 and P4 are unrestricted optimization problems, while P2, P3, P5, and P6 arise when we want to locate a
path which optimizes one criterion subject to a constraint on the other. Note that, problem P2 does not have any solution
if γ > max{`(e)|e ∈ E}, while the discrete version of problem P5 does not have any solution if γ < min{`(e)|e ∈ E}. For
problems P3 and P6 we assume E(PC) ≤ γ, otherwise the problems are infeasible.

To the best of our knowledge the continuous and discrete versions of problems P1–P6 have not been considered in the
literature yet, either on general networks, or on trees.

It can be shown that problems P1–P6 are NP-hard on general networks, both in the continuous and in the discrete version.
We first consider the discrete case.

Problems P2 and P5 contain as a special case the problem of finding a path that minimizes the maximum distance from
the vertices of a network to the facility. For P2 this happens when γ ≤ min{`(e)|e ∈ E}, while for P5 this happens when
γ ≥ max{`(e)|e ∈ E}. Problem P4 contains as a special case the problem of finding a path that minimizes the maximum
distance when α = 1. Thus, Problems P2, P4, and P5 are NP-hard on general networks [5].

It can be shown that also problems P1, P3 and P6 are NP-hard on general networks by using arguments similar to those
given in [5]. Let us start with the decision version of problem P1. Given an arbitrary graph G = (V, E) and a non negative
number R0, decide if there exists a path P such that R(P) ≤ R0. We show that the Hamiltonian Path problem can be reduced to
this problem. Let |V| = n, and suppose that a length equal to one is assigned to each edge e ∈ E. For each vi ∈ V , i = 1, . . . , n,
consider two additional vertices vi1 and vi2, and construct a new graph G′ = (V ′, E′) such that V ′ = V ∪

⋃n
i=1{vi1, vi2} and

E′ = E ∪
⋃n

i=1{(vi, vi1), (vi, vi2)}. Assume that the edges added to G have length equal to 1/2. Set R0 = 0. It is easy to see that
problem P1 has a solution in G′ if and only if G has a Hamiltonian Path.

Let us now consider the decision version of problem P3: given two non negative numbersµ0 and M, decide if there exists
a path P such that µ(P) ≥ µ0 and E(P) ≤ M. We refer to the same reduction as above. We assign length equal to 1 to the
original edges e ∈ E, and length equal to M to the new edges. It is easy to see that, by setting µ0 = 2 and M ≥ 2, problem P3
has a solution in G′ if and only if G has a Hamiltonian Path.

Finally, consider problem P6, and the same reduction as above. We still assign length equal to 1 to the original edges
e ∈ E, and length equal to 1/2 to the new edges (vi, vi1), i = 1, . . . , n, while a length equal to M � 0 is assigned to the new
edges (vi, vi2), i = 1, . . . , n. Consider the decision version of problem P6: given a positive number µ0, decide if there exists
a path P such that µ(P) ≤ µ0 and E(P) ≤ M. Set µ0 = 1/2. Also in this case, it is easy to see that problem P6 has a solution
in G′ if and only if G has a Hamiltonian Path.

For the continuous versions of problems P2, P4 and P5, NP-hardness follows since each of them contains as a special
case the problem of finding a continuous path that minimizes the maximum distance from the vertices of a network to the
facility [5]. For the continuous versions of problems P1, P3 and P6, NP-hardness can be proved applying the same reduction
as in the discrete case.

Now we turn to consider the discrete version of our problems on trees. In the following we study the case when the
absolute center is a vertex of T. Later, we will show that our analysis applies also when the absolute center is a point along
an edge of T.

Let Π denote the set of all discrete paths of the tree T. For solving problems P1–P3, it is necessary to find the maximum
of the minimum distances to a path P ∈ Π , while for solving P4–P6 we have to find the minimum of the minimum distances
to a path P ∈ Π . Given a set S ⊆ Π , we define MS = maxP∈S µ(P), for problems P1–P3, and mS = minP∈S µ(P), for problems
P4–P6.

We root T at the absolute center c. Suppose that PC 6= {c}, then we partition the set of vertices of Tc in the following way.
Denote by v1 one of the two vertices adjacent to c along PC. Let T1 = Tv1 = (V1, E1) be the subtree of Tc rooted at v1, and let
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Fig. 1. The path P = P(a, b) has E(P) = 101 and µ(P) = 100. Any path connecting two leaves is dominated by P w.r.t. �1 .

T2 = (V2, E2), with V2 = V \ V1. Clearly, c ∈ V2. Thus, once T2 has been identified, we consider T2 rooted at c. On the basis of
this decomposition, Π can be partitioned into the three following sets:
– P 1, the paths that contain only vertices of V1;
– P 2, the paths that contain only vertices of V2;
– P , the paths that pass through c and have exactly one endpoint in V1.

Note that, if PC 6= {c}, any path P ∈ P intersects PC in at least one edge.
When PC = {c}we do not need to partition either the tree, or the set Π . Actually, in this case the rooted tree Tc is analyzed

as a whole.
For problems P1–P6, the idea of all the algorithms is similar to those presented in [1,15]. We consider our six problems

embedded into bicriteria path problems with respect to the functions E(·) andµ(·). More precisely, we define the following
two partial orders. Given a path P, a point (E(P),µ(P)) is non-dominated in the partial order �1, i.e., is a Pareto-optimal
point with respect to �1, if there is no other path P∗ with (E(P∗),µ(P∗)) such that E(P∗) ≤ E(P), µ(P∗) ≥ µ(P), and
E(P∗) − µ(P∗) < E(P) − µ(P). A point (E(P),µ(P)) is non-dominated in the partial order �2, i.e., is a Pareto-optimal
point with respect to �2, if there is no other path P∗ with (E(P∗),µ(P∗)) such that E(P∗) ≤ E(P), µ(P∗) ≤ µ(P), and
E(P∗) + µ(P∗) < E(P) + µ(P). For solving problems P1–P3 and P4–P6 we are interested in finding all the Pareto-optimal
paths w.r.t the partial order�1 and the partial order�2, respectively. We denote by πi ⊆ Π the set of Pareto-optimal paths
with respect to the partial order �i, i = 1, 2. Note that |πi| ≤ O(n2), since the total number of paths in T is O(n2).

Proposition 1. Every optimal solution of problem P1 is also Pareto-optimal with respect to E(·) and µ(·), for the partial order
�1. Moreover, for both problems P2 and P3 there is at least an optimal solution which is also Pareto-optimal for the partial order
�1. In addition, every optimal solution of problem P4 is also Pareto-optimal with respect to E(·) and µ(·) for the partial order �2
and for both problems P5 and P6 there is at least an optimal solution which is also Pareto-optimal for the partial order �2. �

From an algorithmic viewpoint, for each of the above two partial orders, we consider a superset Wi, i = 1, 2 that includes
the set of the Pareto-optimal paths in the outcome space (E(·),µ(·)) along with some extra paths, and we generate the
following representation sets φ(Wi), i = 1, 2:

φ(Wi) = {(E(P),µ(P)) ⊂ R2
|P ∈ Wi} i = 1, 2. (5)

Given the tree rooted at c, we identify groups of paths in Tc with the same value of the eccentricity (see Section 3). For
problems P1–P3, among all the paths with the same eccentricity, we search for a path P that maximizesµ(·) and we include
its representation in φ(W1). Similarly, for problems P4–P6, among all the paths with the same eccentricity, we search for a
path P that minimizes µ(·) and we include its representation in φ(W2).

Note that a Pareto-optimal path – both for �1 and �2 – does not necessarily connect two leaves of the tree. An example
for �1 is shown in Fig. 1.

3. Recursive formulas

In order to solve efficiently the problems presented in this paper, a preprocessing phase is needed to compute some
quantities that will be used in the algorithms. In the following we describe the recursive formulas computed during this
preprocessing phase.

First of all we consider paths in P 1 or in P 2. We identify each path P with the vertex at which the maximum distance to
P is attained from a vertex u 6∈ P. Given the rooted tree Tc and a vertex v ∈ V , denote by Pv a path in Tv passing through v or
having v as an endvertex, and by P (Tv) the set of all such paths. Since each vertex v ∈ V identifies all the paths in P (Tv), and
these paths have the same eccentricity, we denote this common value by EP (Tv). For each v ∈ V , the value of this maximum
distance can be computed in constant time applying the following result provided in [1]:



J. Puerto et al. / Discrete Applied Mathematics 157 (2009) 1069–1085 1073

Theorem 1 ([1]). For any path P ∈ P (Tv), we have:

E(P) = EP (Tv) = d(v, c)+
diam

2
. � (6)

On the basis of the results of Proposition 1, our algorithms visit the rooted tree bottom-up and compute the set φ(·) w.r.t.
the partial orders �1 and �2.

Actually, w.r.t. paths in P 1 and P 2, when �1 is considered, for each vertex v ∈ V , among all the paths Pv ∈ P (Tv), with
E(Pv) = EP (Tv), the algorithm computes the maximum value ofµ(·) (problems P1–P3). When�2 is considered, for each vertex
v ∈ V , among all the paths Pv ∈ P (Tv), with E(Pv) = EP (Tv), the algorithm computes the minimum value of µ(·) (problems
P4–P6).

First of all, we consider problems P1–P3 in which, besides minimizing E(·), we are interested in maximizingµ(·). To this
purpose, among all the paths Pv ∈ P (Tv), we want to find a path which maximizes the minimum distance from a vertex
u ∈ Tv \ Pv to Pv. A path with such a property, will be called best path of type 1.

Let us define:

β(v) = max
Pv∈P (Tv)

v endvertex ofPv

µTv(Pv).

Let

d1(v) = min
w∈S(v)

`(v,w), with w1 ∈ arg min{`(v,w)|w ∈ S(v)};

d2(v) = min
w∈S(v)|w 6=w1

`(v,w), with w2 ∈ arg min{`(v,w)|w ∈ S(v),w 6= w1};

d3(v) = min
w∈S(v)|w 6∈{w1,w2}

`(v,w).

We set d1(v) = +∞when v is a leaf of Tc, d2(v) = +∞when |S(v)| ≤ 1, and d3(v) = +∞when |S(v)| ≤ 2.
We define the label flag(v) which is equal to 0 either if the subtree Tv is a path, or if v is a leaf, and it is equal to 1 otherwise.

It can be computed in a bottom-up level-by-level visit of the rooted tree Tc. For each vertex v of Tc we have:

flag(v) =
{

0 if |S(v)| = 1 and flag(w) = 0, or if |S(v)| = 0
1 otherwise, (7)

where w ∈ S(v).

Property 1. Let Pv ∈ P (Tv) be a path starting at v and connecting v to the descendants of a child w 6= w1 of v. We have:

µTv(Pv) ≤ µTv({v}) = d1(v). �

After Property 1, in order to compute β(v), besides the single vertex v withµTv({v}) = d1(v), we need to evaluate only the
paths connecting v and the descendants of w1, while all the other paths in Tv with v as an endvertex can be ignored. Thus,
for each vertex v of Tc, β(v) can be recursively computed as follows:

β(v) =


+∞ if |S(v)| = 0
d1(v) if flag(v) = 0 and |S(w1)| = 0
max{d1(v),β(w1)} if |S(v)| = 1
d2(v) if |S(v)| > 1 and flag(w1) = 0
max{d1(v), min{d2(v),β(w1)}} if |S(v)| > 1 and flag(w1) = 1.

(8)

Note that in the computation of β(v) we consider both the case in which the best path of type 1, Pv ∈ P (Tv) having v as
an endvertex, is v itself and the case in which it includes at least one edge.

Property 2. Let Pf ,g
v ∈ P (Tv) be a path passing through v, with |S(v)| ≥ 3, and connecting the descendants of two children f and

g of v. Then, we have

– if f = w1 and g 6= w2, then any best path Pv starting at v and connecting v with the descendants of w1 has µTv(Pv) = d2(v) ≥
µTv(P

w1,g
v ) (similarly if f 6= w2 and g = w1);

– if f = w2 and g 6= w1, then any best path Pv starting at v and connecting v with the descendants of w2 has µTv(Pv) = d1(v) ≥
µTv(P

w2,g
v ) (similarly if f 6= w1 and g = w2);

– if f , g 6= w1,w2, then µTv({v}) = d1(v) ≥ µTv(P
f ,g
v ). �
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Fig. 2. Possible configurations for Tv .

After Property 2, we need to evaluate only the paths connecting v and the descendants of w1 and w2, while all the other
paths in Tv passing through v, can be ignored. Note that for any path Pw1,w2

v we always have µTv(P
w1,w2
v ) ≤ d3(v). Thus,

the maximum of the minimum distances MP (Tv) of a best path of type 1, Pv ∈ P (Tv) (passing through v or having v as an
endvertex) with respect to the whole tree Tc can be computed as follows

MP (Tv) =


min{`(v, p(v)),β(v)} if |S(v)| ≤ 1
min{`(v, p(v)), max{β(v), min{β(w1),β(w2)}}} if |S(v)| = 2
min{`(v, p(v)), max{β(v), min{β(w1),β(w2), d3(v)}}} if |S(v)| ≥ 3,

(9)

where we set `(v, p(v)) = +∞ if v is the root of the tree.
We note that for any given rooted tree Tr , formulas (7)–(9) can be applied to Tr for finding the maximum of the minimum

distances of a best path of type 1 in P (Tv) w.r.t. the whole tree (see the example in Section 3.1). In our approach, when
PC = {c} we must apply these formulas to Tc. On the other hand, when PC 6= {c}, formulas (7)–(9) must be computed on
T1 and T2 separately. In this case, since the vertex c is evaluated as the root of T2, with EP (Tc) =

diam
2 , in formula (9) we set

`(c, p(c)) = `(c, v1).

Proposition 2. The labels (8) and (9) correctly compute the maximum of the minimum distances of a best path of type 1
Pv ∈ P (Tv) from all the other vertices in Tc not belonging to Pv.

Proof. First consider formula (8), which refers to the best paths of type 1 having v as an endvertex. When v has exactly one
child corresponding to a leaf, the best path is Pv = {v} with µTv({v}) = d1(v). In all the other cases we base our analysis on
Property 1.

If |S(v)| = 1 (see Fig. 2(a)), we have to compare Pv = {v} only with a best path connecting v with the descendants of its
child w1.

When |S(v)| > 1 and flag(w1) = 0 (see Fig. 2(b)), the maximum of the minimum distances of a best path of type 1 Pv is
always equal to d2(v). In fact, consider β(w1): the maximum of the minimum distances to Pv will be equal to d2(v) either if
d2(v) ≤ β(w1), or d2(v) > β(w1), since, in the latter case, one can always extend Pv up to the leaf in Tw1 . Note that in this
case the path Pv = {v} is discarded in any case since d1(v) ≤ d2(v).

When |S(v)| > 1 and flag(w1) = 1 (see Fig. 2(c)), if d2(v) ≤ β(w1), then the maximum of the minimum distances is d2(v)
itself, but it is equal to max{d1(v),β(w1)} if d2(v) > β(w1) since, in this case, also the path Pv = {v}must be evaluated.

On the basis of Properties 1 and 2, formula (9) first identifies the best path of type 1, Pv ∈ P (Tv), comparing, when
necessary, the best path having v as an endvertex with the best path passing through v and connecting vwith the descendants
of w1 and w2. Then, the maximum of the minimum distances of a best path of type 1 Pv ∈ P (Tv) w.r.t. the whole tree Tc is
computed by considering also the length of the edge (v, p(v)). �

In all the problems P1–P3 some additional considerations arise when PC 6= {c} and we have to compute the labels with
respect to the paths in P .

Given a pair of vertices p1, p2 ∈ PC, the eccentricity of the subpath P(p1, p2) ⊆ PC is given by

E(P(p1, p2)) = max
{diam

2
− d(p1, c),

diam
2
− d(p2, c)

}
. (10)

For any given subpath P(p1, p2) ⊆ PC, when diam
2 − d(p1, c) ≥

diam
2 − d(p2, c), we denote by P (p1) the set of all paths in P

containing P(p1, p2), and having eccentricity equal to diam
2 − d(p1, c). A generic path belonging to P (p1) will be denoted by

Pp1p2 . Similarly, we denote by P (p2) the set of all paths containing P(p1, p2) and having eccentricity equal to diam
2 − d(p2, c).

Since these two cases are symmetrical, w.l.o.g., we restrict our attention to paths belonging to P (p1). We denote the
eccentricity of all the paths in P (p1) by EP (p1).

Among all the paths Pp1p2 ∈ P (p1), we are interested in finding a path which maximizes the minimum distance from all
the vertices u ∈ T \ Pp1p2 . A path with such a property will be called a best path of type 2.
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Denote by ci, i = 1, 2 the endvertices of the path center PC. Let (p1, t) be the edge belonging to PC \ P(p1, p2) such that t
is a child of p1 in Tp1 . Assume that p1 6= c1, c2 and p2 6= c1, c2. In order to find a best path of type 2, we have to find a best
path of type 1 starting from p2 in the subtree Tp2 and a best path of type 1 starting from p1 in the subtree Tp1 \ {Tt ∪ (p1, t)}.
We denote this latter particular best path of type 1 by P̂p1 . The maximum of the minimum distances of a best path Pp2 in Tp2
is computed by formula (8), while for P̂p1 in Tp1 \ {Tt ∪ (p1, t)} it is given by

β̂(p1) = min{qβ(p1), `(p1, t)}, (11)

where the new label qβ(v) can be computed during the bottom-up visit of the tree Tc for all the vertices v ∈ PC and
corresponds to formula (8) rewritten by considering the subtree Tv \ {Tt ∪ (v, t)}, where (v, t) ∈ PC and t is a child of v
in Tv.

Note that the maximum of the minimum distances of the best paths of type 1 P̂ci , i = 1, 2, is computed by formula (8)
w.r.t. the subtrees Tci , i = 1, 2, respectively. Thus, we set β̂(ci) = β(ci), i = 1, 2.

For a path P(u1, u2) we define the function mil(P(u1, u2)), i.e., the minimum incident length, as the minimum length of an
edge not belonging to P(u1, u2), but incident to P(u1, u2) in one of the vertices g, with g 6= u1, u2:

mil(P(u1, u2)) = min
(f ,g)|g∈P(u1,u2)\{u1,u2}

f 6∈P(u1,u2)

`(f , g). (12)

Hence, for any given pair of vertices p1, p2 ∈ PC for which a best path of type 2, Pp1p2 belongs to P (p1), we denote by
M̂P (p1)(p2) the maximum of the minimum distances from Pp1p2 to all the other vertices of the tree. On the basis of formulas
(8), (11) and (12) we have:

M̂P (p1)(p2) = min{β̂(p1),β(p2), mil(P(p1, p2))}. (13)

Now, we turn to consider problems P4–P6 in which, besides minimizing E(·), we want to minimize µ(·).
Given a rooted tree Tc and a vertex v ∈ V , among all the paths Pv ∈ P (Tv) we are interested in finding a path which

minimizes the minimum distance from a vertex u ∈ Tv \Pv, to Pv. Also for the Hurwicz-type problems we refer to such a path
as a best path of type 1, as long as this does not cause any confusion with a best path of type 1 of the range-type problems.

Since the minimum distance from a vertex to a path is always given by the length of the shortest edge incident to the path,
the value of the minimum distance from a vertex u ∈ Tv \ Pv, to a best path of type 1, Pv ∈ P (Tv), corresponds to the length of
the shortest edge contained in Tv that we denote by eTv (if the shortest edge is not unique, we choose one arbitrarily). More
precisely, the following property holds.

Property 3. Given a rooted tree Tc and a vertex v ∈ V , a best path of type 1 (w.r.t. the Hurwicz problems) Pv ∈ P (Tv) is always
given by the path in Tv connecting v to the endvertex of eTv closer to v. �

After Property 3, in order to compute the minimum of the minimum distances from a vertex u ∈ Tv \ Pv, to a best path of
type 1 Pv, for each vertex v it suffices to compute the minimum length of an edge in Tv in a bottom-up visit of the tree. We
denote this quantity by h(v) and we have:

h(v) =

{
min{d1(v), min

w∈S(v)
{h(w)}} if |S(v)| ≥ 1,

+∞ if |S(v)| = 0.
(14)

Then, the minimum of the minimum distances from a best path of type 1, Pv ∈ P (Tv), to all the other vertices of the tree
is given by:

mP (Tv) =

{
min{`(v, p(v)), h(v)} if |S(v)| ≥ 1,
`(v, p(v)) if |S(v)| = 0.

(15)

where `(v, p(v)) = +∞ if v is the root of T. When PC 6= {c}we evaluate the vertex c as the root of T2 and, therefore, in formula
(15) we set `(c, p(c)) = `(c, v1).

We now analyze the paths in P for problems P4–P6 when PC 6= {c}. As before, we focus our attention only on paths in
P (p1). Among all the paths Pp1p2 ∈ P (p1) we are interested in finding a path which minimizes the minimum distance from
all the vertices u ∈ T \ Pp1p2 . A path with such a property will be called a best path of type 2 (as long as this does not cause
any confusion with a best path of type 2 of the range-type problems). Assume that p1 6= c1, c2 and p2 6= c1, c2. Let (p1, t) be
the edge belonging to PC \ P(p1, p2) such that t is a child of p1 ∈ Tp1 . The minimum of the minimum distances of a best path
of type 1, P̂p1 in Tp1 \ {Tt ∪ (p1, t)} is:

ĥ(p1) = min{qh(p1), `(p1, t)}, (16)

where the new label qh(v) can be computed by formula (14) during the bottom-up visit of the tree Tc for all the vertices
v ∈ PC, but it has to be rewritten by considering the subtree Tv \ {Tt ∪ (v, t)} where (v, t) ∈ PC and t is a child of v in Tv.
For vertex p2 we compute the minimum of the minimum distances of a best path of type 1, Pp2 in Tp2 by formula (14). The
minimum of the minimum distances of the best paths of type 1, P̂ci , i = 1, 2, is computed by formula (14) w.r.t. the subtrees
Tci , i = 1, 2, respectively. Thus, we set ĥ(ci) = h(ci), i = 1, 2.
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Table 2
Bottom up labelling procedure

Vertex 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
flag(v) 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1
β(v) ∞ 14 ∞ ∞ ∞ 14 ∞ 19 ∞ 9 19 20 ∞ 4 ∞ 15 10
MP (Tv) 14 1 17 19 2 12 9 6 20 4 4 7 15 9 33 16 10

Fig. 3. An example.

Finally, for any given pair of vertices p1, p2 ∈ PC for which a best path of type 2, Pp1p2 , belongs to P (p1), we denote by
m̂P (p1)(p2) the minimum of the minimum distances from Pp1p2 to all the other vertices of the tree:

m̂P (p1)(p2) = min{̂h(p1), h(p2), mil(P(p1, p2))}. (17)

3.1. An example

In this subsection, given a rooted tree Tr (r does not need to be the central vertex), we provide an example showing how
formulas (7)–(9) work in order to find the maximum of the minimum distances of a path among all the paths Pv ∈ P (Tv),
∀v ∈ V .

In this example we are not considering either the eccentricity of the paths Pv ∈ P (Tv) or the partition of the tree T into
the two subtrees T1 and T2. Here (see Fig. 3), we suppose vertex 17 to be the root of the tree. The values along the edges
represent their lengths. For each vertex v, Table 2 reports the values of flag(v), β(v), and MP (Tv).

4. The algorithms

In order to solve problems P1–P6 we adopt a bicriteria approach similar to those presented in [1,15]. Recall that πi ⊆ Π ,
i = 1, 2, denotes the set of Pareto-optimal paths with respect to the partial order �i, i = 1, 2. The algorithms that follow
find two supersets φ(Wi), i = 1, 2, that contain the representations of all the Pareto-optimal paths in the outcome space
(E(·),µ(·)) with respect to the two partial orders �1 and �2, respectively.

4.1. The Pareto-optimal path representation algorithm for �1

Let us first consider the partial order �1 (i.e., problems P1–P3), and let φ(W1) be such that φ(π1) ⊂ φ(W1) ⊂ φ(Π ), that
is, φ(W1) contains the representation of all the Pareto-optimal paths w.r.t. �1, along with some extra points. We will show
that φ(W1) has cardinality O(n).

The idea of the algorithm for computing the setφ(W1) is the following: first, the relevant functions are evaluated at all the
vertices v ∈ Vi, i = 1, 2, and the pairs (EP (Tv),MP (Tv)) are included in φ(W1). This guarantees that the Pareto-optimal paths
belonging to P 1 and P 2 are identified. Then, paths belonging to P are considered, and the pairs (EP (p1), M̂P (p1)(p2)) are
added to φ(W1). In the latter case, it is not necessary to evaluate all the possible subpaths P(p1, p2) ⊆ PC, implying an overall
time complexity O(n2). Indeed, it can be shown that it is sufficient to evaluate only a sequence of O(n) subpaths P1, . . . , Pq
of the path center PC such that, for any given Pareto-optimal path P ∈ P , P is a best path of type 2 for which P ∩ PC ⊇ Pi for
some i = 1, 2, . . . , q. The following proposition provides a result similar to the one given in [1].
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Fig. 4. An Example of a best path of type 2 in P (p1).

Proposition 3. Let PC = P(c1, c2) 6= {c} and P(p1, p2) be a subpath of PC such that c ∈ P(p1, p2), p1 6= c1, p1 6= c, p2 6= c. Suppose
that diam

2 − d(p1, c) ≥
diam

2 − d(p2, c). Let (p1, t) be the edge belonging to PC \ P(p1, p2) such that t is a child of p1 in Tp1 . Consider
a path P ∈ P such that P ∈ π1 and P(p1, p2) ⊆ P ∩ PC. Then, either t ∈ P, or P = Pp1p2 ∈ P (p1) is a best path of type 2 that
satisfies the following two conditions:

(i) E(Pp1p2) = EP (p1) =
diam

2 − d(p1, c);
(ii) µ(Pp1p2) = M̂P (p1)(p2).

Proof. If t is not in P, then, under the assumptions of the proposition, (i) holds, and the path P corresponds to a best path of
type 2 in P (p1) that can be found only by maximizing µ(·) through formula (13) (see Fig. 4). �

According to Proposition 3, the Pareto-optimal paths belonging to P can be identified by considering the sequence of
subpaths P1, . . . , Pq. This sequence can be obtained starting from c and adding one edge at a time. Suppose PC 6= {c} and recall
the decomposition of T presented in Section 2. Let v1 and v2 be the two vertices adjacent to c in PC. W.l.o.g., we may refer to
v1 as the vertex such that diam

2 −d(v1, c) ≥
diam

2 −d(v2, c). Thus, after Proposition 3, we have P1 = (c, v1), while the rest of the
sequence P2, . . . , Pq is generated according to the algorithm for the path center provided in [6] with Pq = PC. Actually, we do
not consider the absolute center c as a subpath of PC since, when PC 6= {c}, vertex c alone is evaluated as the root of T2. Note
that the sequence P1, . . . , Pq is ordered in non-increasing order w.r.t. the eccentricity, that is, E(P1) ≥ E(P2) ≥ · · · ≥ E(Pq).

The following pseudocode describes the algorithm for finding the set φ(W1) with respect to the partial order �1 when
PC 6= {c}. Note that the same algorithm can be adopted when PC = {c}. In this case Step 4 is skipped, Step 5 must be executed
for all v ∈ V , while Step 6 is dropped.

The Pareto-optimal Path Representation Algorithm for �1

Input: An edge-weighted tree T.

Output: The superset φ(W1).

1. φ(W1) = ∅

2. Compute the absolute center c and the path center PC. Let v1 and v2 be the two vertices adjacent to c in PC such that
diam

2 − d(v1, c) ≥
diam

2 − d(v2, c) and consider P1, P2, . . . , Pq, with P1 = (c, v1) and Pq = PC.
3. Root T at the absolute center c.
4. Identify the two subtrees T1 and T2 (see page 7).
5. For all v ∈ Vi, i = 1, 2 do

φ(W1) = φ(W1) ∪ {(EP (Tv),MP (Tv))}

endFor
6. For i = 1 to q do

Let Pi = P(p1, p2) be the current subpath of PC with diam
2 − d(p1, c) ≥

diam
2 − d(p2, c). φ(W1) = φ(W1) ∪

{(EP (p1), M̂P (p1)(p2))}
endFor

7. output φ(W1).

Proposition 4. The cardinality of the set φ(W1) is O(n).
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Fig. 5. An optimal solution for the continuous version of problem P1 is given by P(x, y) with R(P(x, y)) = 23− 20 = 3.

Proof. For each vertex v ∈ Ti, with i = 1, 2, Theorem 1 and formula (9) uniquely determine the values (EP (Tv),MP (Tv)) of a
best path in P (Tv) to be included inφ(W1). By Theorem 1, for all the paths P ∈ P (Tv), one has E(P) = EP (Tv), andµ(P) ≤ MP (Tv).
Note that the absolute center c is evaluated as a vertex of T2 in Step 5. Thus, the number of paths considered in the execution
of Step 5 is O(n). By formula (10) and formula (13), Step 6 provides the values (EP (p1), M̂P (p1)(p2)) of all the Pareto-optimal
paths in P . In order to find all such paths it is sufficient to consider only the sequence of O(n) subpaths P1, P2, . . . , Pq of PC.
Hence, the cardinality of φ(W1) is O(n). �

Proposition 5. The Pareto-optimal Path representation Algorithm for �1 computes the set φ(W1) in O(n) time.

Proof. In the preprocessing phase, labels (6)–(9) and (11) are computed in O(n) time. In Step 2 the absolute center c and
the path center PC are computed in time O(n) [6]. In Step 6 we have to compute EP (p1) and M̂P (p1)(p2) for all subpaths in
the sequence P1, P2, . . . , Pq. This requires O(n) time, too. Hence, the overall time complexity of the Pareto-optimal Paths
representation Algorithm for �1 is O(n). �

Once the set φ(W1) is available, taking into account Propositions 1 and 4, problems P1–P3 can be solved in O(n) time as
follows:
Problem P1:

Among all the pairs (E(P),µ(P)) ∈ φ(W1), find the minimum of R(P) = E(P)− µ(P).
Problem P2:

For a given 0 ≤ γ ≤ max{`(e)|e ∈ E}, find the minimum of E(P) among all the pairs (E(P),µ(P)) ∈ φ(W1) such that
µ(P) ≥ γ.
Problem P3:

For a given γ ≥ 0, find the maximum of µ(P) among all the pairs (E(P),µ(P)) ∈ φ(W1) such that E(P) ≤ γ.
In addition, we note that the set φ(π1) can be extracted from φ(W1) in O(n log n) time by finding the rectilinear lower

envelope of the set φ(W1) with the algorithm provided by Kapoor [8].
We conclude this section by addressing the case in which the absolute center c is a point along an edge of T. Suppose

(v1, v2) ∈ E be the edge containing c. In this case T can be rooted at vertex v2 and the decomposition described in Section 2
(see page 7) still holds if we consider T1 = Tv1 = (V1, E1), and the subtree T2 = (V2, E2) with V2 = V \ V1. Since we are
considering only discrete paths, all the above recursive formulas still apply, and the sequence P1, P2, . . . , Pq is obtained
starting with P1 = (v2, v1).

4.1.1. The continuous version of the range-type problems
Unlike the problems in which the optimal location of a path on a tree is found w.r.t. the median criterion, the center

criterion, or a convex combination of them, in the case of the range-type problems, it is not true that an optimal solution
for the continuous version is always a discrete path (see Fig. 5). Moreover, the analysis applied in the discrete case cannot
be extended to find all the nondominated solutions for the continuous versions of problems P1–P3 since there may exist a
continuum of such paths. Consider Fig. 5 where the vertices of the tree are denoted by white circles, while the points x and
y, located along edges (1, 3) and (2, 4) respectively, are marked in black. All the paths P(x′, y′) obtained by moving x and y
by the same quantity 0 < ε ≤ 0.5 towards vertex 3 and 4, respectively, have E(P(x′, y′)) = 23− ε and µ(P(x′, y′)) = 20− ε,
and they are all nondominated.

In the following we provide details about how to solve the continuous versions of problems P1–P3.
First, consider problem P1, i.e., the problem of finding a continuous path P that minimizes R(P). The idea is to show that

any optimal continuous path must have its endpoints in a finite set. We can augment the set of vertices V by adding these
points, which we call semi-vertices, along the edges of T, thus producing an augmented set of vertices. Then, the recursive
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Fig. 6. A continuous path P(x, y) satisfying the assumptions of Lemma 2 such that both (vi, vj) and (vk, vh) belong to PC.

formulas used in the previous algorithm can be adapted accordingly in order to be applied to the corresponding augmented
tree rooted at c. For each edge of the tree we add at most 2n semi-vertices. Consider edge (vi, vj), with vi = p(vj), in Tc. For
each edge e ∈ E such that `(e) < `(vi, vj), we add two semi-vertices x(e), x′(e) along (vi, vj) such that d(vj, x(e)) = `(e)
and d(vi, x′(e)) = `(e). Let SV be the set of all the semi-vertices. Note that the cardinality of SV is O(n2), and this set can be
computed in O(n2) time by the algorithm provided in [9]. Let Va

= V ∪ SV . If the center c of the original tree is a point along
an edge, then Va

= V ∪ SV ∪ {c}. For the sake of simplicity, here we still denote the augmented rooted tree by Tc.
For each edge (vi, vj), with vi = p(vj), in the original rooted tree, we number the semi-vertices in (vi, vj) from the closest

to vj to the closest to vi, that is, if xr and xr+1 are two consecutive semi-vertices in (vi, vj), then d(xr, vj) < d(xr+1, vj).
We denote by (vi, vj) also the set of all the points along the corresponding edge. Given xr , xr+1 in (vi, vj), we denote

by (xr+1, xr) the subset of points of (vi, vj) located between xr and xr+1, that is, for every point a ∈ (xr+1, xr) we have
d(xr, vj) ≤ d(a, vj) ≤ d(xr+1, vj).

The following results show that for solving the continuous version of P1 on the original tree, it is sufficient to consider
only paths with endvertices in the finite set Va.

Lemma 1. Let (vi, vj) and (vk, vh) be two edges of the original rooted tree, with vi = p(vj) and vk = p(vh) (including the case
vi = vk and vj = vh). Assume that both (vi, vj) and (vk, vh) belong to either T1 ∪ (c, v1) or to T2. Let P(x, y) be a continuous path
with endpoints x ∈ (xr+1, xr) in (vi, vj) and y ∈ (ys+1, ys) in (vk, vh) satisfying d(c, xr+1) < d(c, xr) and d(c, ys+1) < d(c, ys). Then,
there exists a path P(x̂, ŷ) with x̂, ŷ ∈ Va such that R(P(x̂, ŷ)) ≤ R(P(x, y)).

Proof. W.l.o.g., suppose d(x, c) ≤ d(y, c). For a path P(x, y) satisfying the assumptions of the lemma, only the following two
cases hold:

Case 1: x ∈ (xr+1, xr) in (vi, vj), x 6= vi, vj, and y ∈ (ys+1, ys) in (vk, vh), y 6= vk, vh, and P(x, y) ⊂ Tvi with vi 6∈ P(x, y). We
have E(P(x, y)) = d(x, c) + diam

2 and, taking x̂ = xr+1, ŷ = ys+1 we get E(P(x̂, ŷ)) = E(P(x, y)) − d(x, xr+1). Then, if µ(P(x, y))
is attained at x, we have µ(P(x̂, ŷ)) = µ(P(x, y)) − d(x, xr+1) and, thus, R(P(x̂, ŷ)) = R(P(x, y)). If µ(P(x, y)) is not attained
at x it can be verified that R(P(x̂, ŷ)) < R(P(x, y)). In fact, when µ(P(x, y)) is attained at a vertex along P(x, y), we have
R(P(x, y)) = R(P(x, ŷ)) > R(P(x̂, ŷ)), while, when µ(P(x, y)) is attained at y, we have R(P(x, y)) > R(P(x, ŷ)) ≥ R(P(x̂, ŷ)).

Case 2: x ∈ (xr+1, xr) in (vi, vj), x 6= vi, vj, and y ∈ (ys+1, ys) in (vk, vh), y 6= vk, vh, P(x, y) ⊂ Tv, for some v, and v ∈ P(x, y).
In this case we set x̂ = xr+1, ŷ = ys+1 and we have E(P(x, y)) = E(P(x̂, ŷ)), while µ(P(x̂, ŷ)) ≥ µ(P(x, y)). Hence,
R(P(x̂, ŷ)) ≤ R(P(x, y)).

It is straightforward to see that the above analysis still holds when one between x and y is a vertex. �

Lemma 2. Let (vi, vj) and (vk, vh) be two edges of the original rooted tree, with vi = p(vj) and vk = p(vh). Assume that
(vi, vj) ∈ T1 ∪ (c, v1) and (vk, vh) ∈ T2. Let P(x, y) be any continuous path with endpoints x ∈ (vi, vj) and y ∈ (vk, vh). There
exists a path P(x̂, ŷ), x̂, ŷ ∈ Va, such that R(P(x̂, ŷ)) ≤ R(P(x, y)) for all such continuous paths P(x, y).

Proof. Let P(x, y) be a continuous path satisfying the assumptions of the lemma. Suppose that both (vi, vj) and (vk, vh) belong
to PC (see, Fig. 6).
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In this case, we have

E(P(x, y)) = max
{diam

2
− d(c, x),

diam
2
− d(c, y)

}

=
diam

2
−min{d(c, vj)− d(x, vj), d(c, vh)− d(y, vh)}, (18)

where d(c, x) = d(c, vj)− d(x, vj) and d(c, y) = d(c, vh)− d(y, vh). On the other hand, the minimum distance is given by

µ(P(x, y)) = min{d(x, vj), d(y, vh), `(ē)},

where `(ē) = mil(P(vi, vk)) (see, formula (12)). Note that µ(P(x, y)) ≤ `(ē). We now compute the range function for P(x, y)
as follows

R(P(x, y)) =
diam

2
−min{d(c, vj)− d(x, vj), d(c, vh)− d(y, vh)} −min{d(x, vj), d(y, vh), `(ē)} (19)

for which only the following six values are possible:

1. R(P(x, y)) = diam
2 − d(c, vj)+ d(x, vj)− d(x, vj) =

diam
2 − d(c, vj);

2. R(P(x, y)) = diam
2 − d(c, vj)+ d(x, vj)− d(y, vh);

3. R(P(x, y)) = diam
2 − d(c, vj)+ d(x, vj)− `(ē);

4. R(P(x, y)) = diam
2 − d(c, vh)+ d(y, vh)− d(y, vh) =

diam
2 − d(c, vh);

5. R(P(x, y)) = diam
2 − d(c, vh)+ d(y, vh)− d(x, vj);

6. R(P(x, y)) = diam
2 − d(c, vh)+ d(y, vh)− `(ē).

For points 1–3, which refer to the cases when the eccentricity of P(x, y) is attained at x, the following holds:

R(P(x, y)) =
diam

2
− d(c, vj)+∆, ∆ ≥ 0.

In fact, in case 1, ∆ = 0. In case 2, we have

∆ = d(x, vj)− d(y, vh) ≥ 0

since d(y, vh) = min{d(x, vj), d(y, vh), `(ē)} ≤ d(x, vj). Similarly, in case 3, we have

∆ = d(x, vj)− `(ē) ≥ 0

since `(ē) = min{d(x, vj), d(y, vh), `(ē)} ≤ d(x, vj).
The same analysis applies to cases 4–6, when the eccentricity of P(x, y) is attained at y, and we have

R(P(x, y)) =
diam

2
− d(c, vh)+∆′, ∆′ ≥ 0.

In any case, the minimum of the range function, say R̄, is attained either when ∆ = 0, or when ∆′ = 0, and, taking into
account formula (19), it can be computed as follows:

R̄ = R(P(x, y)) =
diam

2
−min{d(c, vj), d(c, vh)}.

We show that one can always find two semi-vertices x̂, ŷ ∈ Va such that R(P(x̂, ŷ)) = R̄. Actually, by construction, there
always exist two semi-vertices, x(ē) ∈ (vi, vj) and y(ē) ∈ (vk, vh) such that d(x(ē), vj) = d(y(ē), vh) = `(ē). Let x̂ = x(ē) and
ŷ = y(ē). Note that it may happen that x̂ = vi, or ŷ = vk, or both. By formula (19), we have

R(P(x̂, ŷ)) =
diam

2
−min{d(c, vj)− `(ē), d(c, vh)− `(ē)} − `(ē) = R̄.

Note that there could be other paths P(x, y), with x ∈ (vi, vj) and y ∈ (vk, vh) such that R(P(x, y)) = R̄, but all of them are
equivalent to P(x̂, ŷ) and, therefore, they can be discarded.

To complete the proof, we consider the cases in which only one between (vi, vj) and (vk, vh) belongs to PC and the case
when none of them belongs to PC.

W.l.o.g, suppose that only (vi, vj) belongs to PC. Let vq be the vertex in PC such that P(vi, vq) is the maximum discrete
subpath of PC contained in P(x, y). Then

R(P(x, y)) =
diam

2
−min{d(c, vj)− d(x, vj), d(c, vq)} −min{d(x, vj), d(y, vh), `(ē)}.

When d(c, vj)− d(x, vj) < d(c, vq), the eccentricity of P(x, y) is attained at x, and the analysis is the same as before (see cases
1–3). Otherwise, we have
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R(P(x, y)) =
diam

2
− d(c, vq)−min{d(x, vj), d(y, vh), `(ē)} ≥

diam
2
− d(c, vq)− `(ē) = R(P(x̂, ŷ)),

since min{d(x, vj), d(y, vh), `(ē)} ≤ `(ē).
Finally, when neither (vi, vj), nor (vk, vh) belong to PC, for any path P(x, y), with x ∈ (vi, vj) and y ∈ (vk, vh), we have

E(P(x, y)) = E(P(vi, vk)) = E(P(x̂, ŷ)) = Ē, and, as before

R(P(x, y)) = Ē−min{d(x, vj), d(y, vh), `(ē)} ≥ Ē− `(ē) = R(P(x̂, ŷ)). �

Lemmas 1 and 2 imply that, when searching for an optimal continuous path for problem P1, it is sufficient to consider
only those paths with endpoints in Va. Actually, the continuous range problem on the original tree T = (V, E) is equivalent
to the discrete range problem on the augmented tree with the range function defined in the following, more general, way:

R(P) = max
u∈V′\P

d(u, P)− min
u∈V′\P

d(u, P),

where V ′ ⊆ Va and, in our case, V ′ = V . However, the recursive formulas presented in Section 3 must be suitably adapted.
We apply the same decomposition presented for the discrete case (see page 7) to the augmented tree Tc and we still classify
paths into paths of type 1 and paths of type 2.

For any z ∈ Va, let

βa(z) = max
Pz∈P (Tz)

z endvertex of Pz

µTz(Pz) (20)

i.e., the function β(·) is extended to the points in Va. Consider the edge (vi, vj), with vi = p(vj), and suppose z = xr+1 ∈ (vi, vj).
Then, we define

βa(xr+1) =


β(xr+1) if xr+1 ∈ V
d(xr+1, vj) if xr+1 ∈ (vi, vj), xr+1 6= vi, vj and |S(vj)| = 0
max{d(xr+1, vj),β

a(xr)} if xr+1 ∈ (vi, vj), xr+1 6= vi, vj and |S(xr)| ≥ 1,
(21)

where xr ∈ (vi, vj), with d(c, xr+1) < d(c, xr). Note that both xr+1 and xr may be either original vertices (that is, xr+1 = vi,
xr = vj) or semi-vertices.

In formula (21) we can set βa(xr+1) = β(xr+1) when xr+1 is an original vertex, since it is easy to check that, in the
augmented tree, for any best path of type 1, P(vi, y) ∈ P (Tvi), with one end at vertex vi and the other end at a semi-vertex
y ∈ (vk, vh), the path P(vi, vk) ⊂ P(vi, y) is a best path of type 1, with both its endpoints at original vertices, for which
R(P(vi, vk)) ≤ R(P(vi, y)).

For a given z ∈ Va, we define the function Ma
P (Tz)

as follows:

Ma
P (Tz)
=

{
MP (Tz) if z ∈ V
min{d(z, vi),βa(z)} if z ∈ (vi, vj), z 6= vi, vj.

(22)

Now consider paths of type 2. Let PC be the path center in the augmented tree Tc. Consider any path P(z1, z2) ⊆ PC with
z1, z2 ∈ Va. We always refer to z1 as the vertex at which the eccentricity of P(z1, z2) is attained, and we denote by P (z1) the
set of all paths of type 2 in the augmented tree containing P(z1, z2) and having eccentricity equal to diam

2 − d(z1, c). In order
to find a best path of type 2 in P (z1), for all z ∈ PC we compute:

β̂a(z) =

{
β̂(z) if z ∈ V
d(z, vj) if z ∈ (vi, vj), z 6= vi, vj.

(23)

Finally, we have:

M̂a
P (z1)(z2) = min{β̂a(z1),β

a(z2), mil(P(z1, z2))}. (24)

Note that, when an original vertex z ∈ V is considered, the recursive formulasβ(z),MP (Tz), and β̂(z), in (21)–(23), respectively,
are computed taking into account that a child w of z could be either an original vertex or a semi-vertex.

These formulas can be computed on the augmented tree in a preprocessing phase in time O(|Va
|). Hence, the algorithm

for the discrete case can be applied to solve the continuous version of problem P1 with an overall time complexity O(n2).
Now, consider problem P2, i.e., the problem of finding a continuous path P that minimizes E(P) withµ(P) ≥ γ, for a given

γ, 0 ≤ γ ≤ max{`(e)|e ∈ E}. We root the tree at c, and augment the set of its vertices V by adding to each edge e = (vi, vj)
with vi = p(vj) and `(e) > γ, two new semi-vertices x(γ) and x′(γ) such that d(vj, x(γ)) = γ and d(vi, x′(γ)) = γ. Let Vγ

denote the augmented set of vertices. Note that at most two new semi-vertices are added for each edge and thus we have
|Vγ | = O(n). For the sake of simplicity, we still denote the rooted augmented tree by Tc.

Proposition 6. Let (vi, vj) and (vk, vh) be two edges of the original rooted tree, with vi = p(vj) and vk = p(vh) (including the case
vi = vk and vj = vh). Consider problem P2 for a given γ, 0 ≤ γ ≤ max{`(e)|e ∈ E}. Let P(x, y) be any feasible continuous path
with endpoints x ∈ (vi, vj) and y ∈ (vk, vh). There exists a feasible path P(x̂, ŷ), x̂, ŷ ∈ Vγ , such that E(P(x̂, ŷ)) ≤ E(P(x, y)) for all
such feasible continuous paths P(x, y).
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Proof. Let P(x, y) be a feasible continuous path satisfying the assumptions of the proposition. Let Vγ be the augmented set
of vertices and x(γ), y(γ) ∈ Vγ the two semi-vertices such that x(γ) ∈ (vi, vj), with d(x(γ), vj) = γ, and y(γ) ∈ (vk, vh),
with d(y(γ), vh) = γ. First, suppose that the vertices vi and vk are contained in P(x, y), vj and vh are not, and x 6= vi, vj, x(γ),
y 6= vk, vh, y(γ). Since P(x, y) is feasible, we have µ(P(x, y)) ≥ γ, d(x, vj) > γ and d(y, vh) > γ. Hence, setting x̂ = x(γ) and
ŷ = y(γ) produces a new discrete path (in the augmented tree) P(x̂, ŷ) such that µ(P(x̂, ŷ)) = γ. If the eccentricity of P(x, y)
is not attained at x nor at y, then E(P(x̂, ŷ)) = E(P(x, y)), otherwise E(P(x̂, ŷ)) < E(P(x, y)).

In the particular case when x and y belong to the same edge, that is, vi = vk and vj = vh, w.l.o.g., we can assume
d(x, c) < d(y, c), and we set x̂ = x′(γ), where d(vi, x′(γ)) = γ, and ŷ = y(γ).

A similar analysis applies to all the other possible configurations of P(x, y). �

After Proposition 6, we are able to compute analogous formulas to (20)–(24) for the augmented tree w.r.t. the set Vγ and
solve the problem of finding a discrete path P that minimizes E(P) = maxu∈V′\P d(u, P) with µ(P) = minu∈V′\P d(u, P) ≥ γ in
the augmented tree, where V ′ ⊆ Vγ and, in our case, V ′ = V . This problem is equivalent to the continuous version of problem
P2 on the original tree. The new formulas can be computed on the augmented tree in a preprocessing phase in time O(|Vγ |).
Hence, an optimal solution for the continuous version of problem P2 can be obtained in O(n) time.

Now consider problem P3, i.e., the problem of finding a continuous path P that maximizesµ(P) with E(P) ≤ γ, for a given
γ ≥ 0. Recall that E(PC) ≤ γ must hold, otherwise the problem is infeasible.

Even in this case we root the tree at c, and augment the set of its vertices by adding O(n) new semi-vertices to V . The
following proposition provides a result for the unconstrained continuous version of P3, i.e., finding a continuous path P that
maximizes µ(P).

Proposition 7. A continuous path that maximizes the minimum distance µ(·) in a tree Tc is either discrete or it is the middle
point of the longest edge of Tc.

Proof. Suppose that P(x, y) is a continuous path that maximizes the minimum distance µ(·). If x and y are points belonging
to the same edge, then P(x, y) must be a single point (i.e., x = y), and it must coincide with the middle point of the edge.
Moreover, it is easy to check that, since P(x, y) is optimal, this case occurs only when x = y is the middle point of the
longest edge of Tc. On the other hand, suppose x and y belong to different edges and at least one of them is not a vertex.
W.l.o.g., we can always assume that x is a vertex and y is in the interior of an edge (vi, vj), with vi = p(vj), and that vi belongs
to P(x, y), but vj does not. Then, for the (unique) discrete path with the same set of vertices of P(x, y), P(x, vi) ⊂ P(x, y),
µ(P(x, vi)) = µ(P(x, y)) must hold, otherwise P(x, y) cannot be optimal. By similar arguments, it can be shown that if P(x, y)
is a continuous path that maximizes the minimum distance with both x and y points along some edges, then, even in this
case, the (unique) discrete path with the same set of vertices of P(x, y), and contained in P(x, y), is optimal as well. �

Proposition 7 shows that the middle point of each edge is a possible candidate for the optimal solution of the continuous
version of problem P3. Thus, we augment V by adding new semi-vertices corresponding to the middle points of all the edges.
Let MP be the set of all the middle points, then, we augment V to V ∪MP.

For the sake of simplicity, we still denote the rooted augmented tree by Tc. We consider the usual decomposition of Tc
(see page 7) and refer to the classification of paths in paths of type 1 and paths of type 2.

However, since in P3 the constraint on the eccentricity must be satisfied, some more semi-vertices must be added. For
finding the best paths of type 1, we further augment V and, along each path from c to a leaf v of Tc for which d(c, v) ≥ γ− diam

2 ,
we add a new vertex x(γ) such that d(x(γ), c)+ diam

2 = γ. Let (u, v), with v = p(u) and u, v ∈ V∪MP, be an edge that contains
an additional vertex x(γ). Since, for any point z in Tx(γ) \ {x(γ)}, d(z, c)+ diam

2 > γ, all the paths of type 1 in Tx(γ) \ {x(γ)} are
infeasible.

For finding the best paths of type 2, we only include two additional vertices, x1(γ) and x2(γ), along the path center such
that γ = diam

2 − d(c, x1(γ)) =
diam

2 − d(c, x2(γ)). Let (v1, u1) and (v2, u2), with v1 = p(u1) and with v2 = p(u2), be the two
edges of PC containing x1(γ) and x2(γ), respectively. Note that all the paths of type 2 that do not contain both x1(γ) and x2(γ)
are infeasible.

We denote the set of all these additional vertices by Γ . Thus, for problem P3 we further augment V∪MP to Vγ = V∪MP∪Γ ,
with |Vγ | = O(n), and this set can be computed in linear time.

For a given x̂ ∈ Γ , x̂ 6= x1(γ), x2(γ), let (vi, vj) be the edge of the original tree that contains x̂, with vi = p(vj), and let
u ∈ MP be the middle point of (vi, vj). W.l.o.g., assume x̂ ∈ (vi, u), x̂ 6= vi, u. Then, in the augmented tree, P̂x is a feasible path
of type 1. Any continuous feasible path P(z) that can be obtained by extending P̂x up to a point z ∈ (vi, x̂), z 6= vi, x̂, can be
discarded since we always have µ(P̂x) ≥ µ(P(z)).

On the other hand, consider x1(γ) and x2(γ) and every feasible continuous path P(z1, z2) for which z1 and z2 are not
vertices in Vγ and P(z1, z2) ∩ PC ⊇ P(x1(γ), x2(γ)). Let ui,uj,uk,uh be vertices in the corresponding augmented tree such that
ui = p(uj), with z1 ∈ (ui, uj), z1 6= ui, uj, and uk = p(uh), with z2 ∈ (uk, uh), z2 6= uk, uh. Then, the path P(ui, uk) is feasible and
such that P(ui, uk) ∩ PC ⊇ P(x1(γ), x2(γ)), and we have µ(P(ui, uk)) ≥ µ(P(z1, z2)). Hence, even these (continuous) paths
P(z1, z2) can be discarded.

The above discussion guarantees that, for solving the continuous version of problem P3, it is sufficient to consider only
those paths with endpoints in Vγ . Actually, we are able to compute analogous formulas to (20)–(24) for the augmented
tree w.r.t. the set Vγ and solve the problem of finding a discrete path P maximizing µ(P) = minu∈V′\P d(u, P) with E(P) =
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maxu∈V′\P d(u, P) ≤ γ in the augmented tree, where V ′ ⊆ Vγ and, in our case, V ′ = V . This problem is equivalent to the
continuous version of problem P3 on the original tree. The new formulas can be computed on the augmented tree in a
preprocessing phase in time O(|Vγ |). Hence, an optimal solution for the continuous version of problem P3 can be obtained
in O(n) time.

4.2. The Pareto-optimal path representation algorithm for �2

In this section we consider the partial order �2, i.e., problems P4–P6. Let φ(W2) be such that φ(π2) ⊂ φ(W2) ⊂ φ(Π ),
that is, φ(W2) contains the representation of all the Pareto-optimal paths w.r.t. �2, along with some extra points. We will
show that φ(W2) has cardinality O(n).

The idea of the algorithm for computing the set φ(W2) is the following: first, the relevant functions are evaluated at all
the vertices v ∈ Vi, i = 1, 2, and the pairs (EP (Tv),mP (Tv)) are included in φ(W2). This guarantees that the Pareto-optimal
paths belonging to P 1 and P 2 are identified. Then, paths belonging to P are considered, and the pairs (EP (p1), m̂P (p1)(p2))
are added to φ(W2). The following Proposition 8 provides results similar to those of Proposition 3, with respect to a suitable
sequence of O(n) subpaths P1, . . . , Pq of PC.

Proposition 8. Let PC = P(c1, c2) 6= {c} and P(p1, p2) be a subpath of PC such that c ∈ P(p1, p2), p1 6= c1, p1 6= c, p2 6= c. Suppose
that diam

2 − d(p1, c) ≥
diam

2 − d(p2, c). Let (p1, t) be the edge belonging to PC \ P(p1, p2) such that t is a child of p1 in Tp1 . Consider
a path P ∈ P such that P ∈ π2 and P(p1, p2) ⊆ P ∩ PC. Then, either t ∈ P, or P = Pp1p2 ∈ P (p1) is a best path of type 2 that
satisfies the following two conditions:

(i) E(Pp1p2) = EP (p1) =
diam

2 − d(p1, c);
(ii) µ(Pp1p2) = m̂P (p1)(p2).

Proof. If t is not in P, then, under the assumptions of the proposition, (i) holds, and path P corresponds to a best path of type
2 in P (p1) that can be found only by minimizing µ(·) through formula (17) (see Fig. 4). �

According to Proposition 8, the Pareto-optimal paths belonging to P can be identified by considering the sequence of
subpaths P1, . . . , Pq. This sequence can be obtained starting from c and adding one edge at a time. Suppose PC 6= {c} and
recall the decomposition of T presented in Section 2. Let v1 and v2 be the two vertices adjacent to c in PC. W.l.o.g., we may
refer to v1 as the vertex such that diam

2 − d(v1, c) ≥
diam

2 − d(v2, c). Thus, after Proposition 8, we have P1 = (c, v1), while
the rest of the sequence P2, . . . , Pq is generated according to the algorithm for the path center provided in [6] with Pq = PC.
Actually, we do not consider the absolute center c as a subpath of PC since, when PC 6= {c}, vertex c alone is evaluated as the
root of T2.

In order to obtain the Pareto-optimal Path Representation Algorithm for�2, the pseudocode provided in Section 4.1 can
be re-arranged by using formulas (15) and (17) in place of (9) and (13), respectively. The case in which the absolute center
c is a point along an edge of T is handled as in Section 4.1.

Proposition 9. The cardinality of the set φ(W2) is O(n).

Proof. On the basis of Proposition 8, the proof uses arguments similar to those provided in the proof of Proposition 4. �

Proposition 10. The Pareto-optimal Path representation Algorithm for �2 computes the set φ(W2) in O(n) time.

Proof. In the preprocessing phase, labels (6) and (14)–(16) are computed in O(n) time. The absolute center c and the path
center PC are computed in time O(n) [6]. The computation of EP (p1) and m̂P (p1)(p2) for all the subpaths of the sequence
P1, P2, . . . , Pq requires O(n) time. Hence, the overall time complexity of the algorithm is O(n). �

Once the set φ(W2) is available, we are able to solve problems P4–P6. In addition, we note that the set φ(π2) can be
extracted from φ(W2) in time O(n log n) by finding the rectilinear lower envelope of the set φ(W2) with the algorithm
provided by Kapoor [8].

Taking into account Propositions 1 and 9, problems P4–P6 can be solved in O(n) time as follows:

Problem P4:
Given 0 ≤ α ≤ 1, among all the pairs (E(P),µ(P)) ∈ φ(W2), find the minimum of H(P) = αE(P)+ (1− α)µ(P).

Problem P5:
For a given γ ≥ min{`(e)|e ∈ E}, find the minimum of E(P) among all the pairs (E(P),µ(P)) ∈ φ(W2) such that µ(P) ≤ γ.

Problem P6:
For a given γ ≥ 0, find the minimum of µ(P) among all the pairs (E(P),µ(P)) ∈ φ(W2) such that E(P) ≤ γ.
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Fig. 7. The path center is P(x, y), where x and y are points in the interior of edges (1, 4) and (2, 4), respectively, and E(P(x, y)) = 1. Moving y up to z
produces the path Pε = P(x, z) that has the same eccentricity as P(x, y) and minimum distance equal to ε. However, taking for instance α = 0.5, we have
H(Pε) = 0.5+ 0.5ε, but when ε = 0, that is, z coincides with vertex 2, we have H(P0) = 1. Thus, limε→0 H(Pε) 6= H(P0), implying that the value 0.5 cannot
be reached.

4.2.1. The continuous version of the Hurwicz-type problems
The results for the continuous versions of problems P4–P6 rely on the following proposition.

Proposition 11. Given a tree T that is not a path, for all ε > 0, one can always find a path P such that E(P) = E(PC) andµ(P) = ε.

Proof. First of all, note that in the continuous case the path center PC will never have its endpoints in the leaves (unless
the tree is a path), since, according to the definition of path center, the minimum length path that minimizes the maximum
distance from the vertices of the tree will always end before reaching a leaf, at a distance equal to the eccentricity from that
leaf. Thus, no endpoint of PC is a leaf (see, for example, the path P(x, y) in Fig. 7) and, for every ε > 0, a path Pε such that
E(Pε) = E(PC) andµ(Pε) = ε can be obtained by enlarging PC along an edge, from one of its endpoints up to a distance equal
to ε from the next vertex (see the path P(x, z) in Fig. 7). �

Proposition 11 shows that there exists no optimal solution for problems P4 and P6, since, in both cases, for any feasible
path Pε, a better feasible solution Pε can always be found with 0 < ε < ε, but the infimum of the objective function cannot
be reached. This situation is shown in Fig. 7 for problem P4 with the value α = 0.5. Moreover, Proposition 11 shows that
problem P5 is feasible for every γ > 0, and an optimal solution can be always obtained by Pε, with ε ≤ γ. In this case problem
P5 reduces to computing the path center. On the other hand, if γ = 0 problem P5 is infeasible.

5. Concluding remarks

In this paper we study the problem of locating a path on a network with different objective functions conceptually related
to the variability of the distribution of the distances from the demand points to the path. We formulate six different problems
(Problems P1–P6), where the first three problems are related to the range objective function and the other three to the
Hurwicz objective function. We show that all the considered problems are NP-hard on general networks.

We provide a dynamic programming approach to solve the discrete version of all the problems on trees in O(n) time. In
addition, we define two partial orders induced by the maximum and the minimum distance criteria, and show that, for the
discrete problems on a tree, a representation of the set of all the Pareto-optimal paths, with respect to these partial orders,
can be obtained in O(n log n) time.

We also discuss the continuous versions of the range-type and Hurwicz-type problems on trees. For Problem P1, that
is, finding a continuous path that minimizes the range function, we provide a O(n2) time algorithm for finding an optimal
solution, while for problems P2 and P3 we provide linear time algorithms. For the continuous version of the Hurwicz-type
problems we show that either an optimal path does not exist (Problems P4 and P6), or it can be found in constant time once
the path center is available (Problem P5).

We note that, since in the discrete case our algorithms are able to generate the whole Pareto-optimal path representation
set, they can also be used to solve the following, more general, problem: find a discrete path P which minimizes the linear
combination of E(P) and µ(P): λE(P)+ δµ(P), where λ ≥ 0 and δ ∈ R.

It is still an open problem how to extend the algorithms presented in this paper to the case in which nonnegative weights
are assigned to the vertices of the tree. According to similar results in [15], we conjecture that subquadratic time algorithms
exist for most of the weighted versions of these problems. Analyzing these cases will be the subject of a follow up paper.
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